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Chapter 1

Executive Summary

1.1 Thrust

Phillips Laboratory has recently realized the confluence of two important events: the dis-
covery of a spatially discreet transport theory and the construction of a cellular automata
machine (CAM-8) and a wide-purpose Connection Machine-5 (CM-5). That is, there now
exists first-principles lattice gas automata (LGA) and lattice Boltzmann equation (LBE)
formalisms for modeling complex systems. The CAM-8 now exists as a cheap, fast paral-
lel bit-level hardware optimized for LGA simulation. The Connection Machine-5, which has
been recently installed at the Army High Performance Computing Research Center, is ideally
suited to LBE simulation because of its floating-point and virtualization capabilities. There-
fore, we propose a two-pronged parallel computing strategy for our thermohydrodynamic
research: 1) LGA implemented on a low-cost next-generation cellular automata machine
(CAM-8); and 2) LBE implemented on the Connection Machine (CM-200 and CM-5).

1.2 Approach

1.2.1 Lattice Gas Automata

LGA and LBE offer a simplified modeling strategy for handling complex and “messy” physi-
cal simulations, for example, fluids with complex interfacial boundaries throughout the entire
simulation space. LGA and LBE are an efficient software tool for programming massively
parallel architectures. LGA offers a unique and powerful representation of macroscopic dy-
namics by reducing the calculation to local space-time processes controlled within standard
dynamic random access memory employing only data shifts and permutations. No central
processing unit operations are required 1. The payoff of a widely successful LGA theory, can

1The CAM-8 design requires no internal CPUs.
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be high.
CAM is a promising platform, comparable in speed 2 and less expensive then other

parallels platforms in the United States capable of running LGA calculations 3. We will test
the validly of massively fine-grained simulation and its correspondence with hydrodynamic
macroscopic systems.

1.2.2 Vision

We wish to exploit LGA and LBE theory and next generation massively parallel architectures
for boasting simulation rates and cost-effectiveness. Potential long-range application is:
accurately model the time evolution of complex Navier-Stokes fluids.

1.3 Anticipated Benefits

1.3.1 Need of the Simulation Community

This initiative element supports the Air Force critical technology of simulation and modeling,
an important new growth area for our laboratories. The Air Force objective for broad-based
environmental simulations to help reduce future design and engineering costs are critically
dependent on physical simulation technology. A sufficiently good physical simulation strategy
and platform does not yet exist. The direction in which the Air Force simulation community
is heading, although highly appealing to Air Force leaders, is actually technically very risky.
Basic research in new parallel computing strategies is needed to help reduce that risk.

2Data shifting is handled simply by pointer manipulations.
3MasPar’s MP-1 is a typical example with 8192 four-bit processors costing about $800K.
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Chapter 2

Programmatic Description

2.1 Introduction

Request AFOSR support for a new initiative for lattice gas automata research and develop-
ment of a massively parallel cellular automata machine (CAM). This research will comprise
constructing a large CAM and developing hydrodynamic lattice gas automata (LGA) algo-
rithms. This research will also comprise implementing the lattice Boltzmann equation (LBE)
on state-of-the-art parallel supercomputer architectures such as the Connection Machine
(CM-200 and CM-5). The hydrodynamic LGA will serve as a test-bed for demonstrating
a novel parallel computing strategy which strives to capture, in the most digitally efficient
and numerically stable way, accurate physical behavior of large-scale complex systems. This
research will also provide for comparison of the LGA method with LBE. We will explore
using a multigrid approach in connection with the lattice Boltzmann method.

2.2 Submitting Agency

Phillips Laboratory (Air Force Materiel Command), Geophysics Directorate, (PL/GPAA,
Hanscom AFB, MA 01731). Manager: J. Yepez, DSN 478-2475, yepez@plh.af.mil. TAP
Reference: Computational Mathematics Subarea 2304/CS, PL/GP Simulation and Applica-
tions 6670.

2.3 Lattice-Gas Automata and Lattice Boltzmann Model

LGA and LBE methods are still in a formative stage. Important engineering applications
for hydrodynamic LBE currently only exist for flow through porous media. LBE is suited
to parallel architectures with significant floating-point performance, high virtual-processor
ratios, and efficient grid-communications. The Connection Machine is an ideal platform
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for LBE. On the other hand, LGA is suited to parallel architectures optimized for fine-
grained bit-level manipulations. Cellular automata machines (CAM) can be constructed
inexpensively to run LGA models at unprecented rates, orders of magnitude faster than
LGA models on general-purpose massively parallel computers.

A 3-D hydrodynamics model is a prototypical complex system for the LGA or LBE
methodology. LGA and LBE are an efficient and physically elegant parallel programming
paradigm. All calculations are local and, for LGA, can use reversible rules. Therefore
the LGA and LBE programming paradigms closely mirror real-world physics which is fine-
grained and time-invariant. So LGA and LBE may offer a simplified modeling strategy
for handling many complex and “messy” physical simulations, i.e. cases with multiphase
interfacial boundaries affect fluid flow properties. Hydrodynamics LGA and LBE may prove
to be the most efficient software tool for programming massively parallel architectures.

2.4 Value to the Scientific Community

Cellular automata provide a conceptually simple and intuitive model for encoding the essen-
tial physics of complex systems. Cellular automata models of such systems offer an unique
opportunity to explore a system’s underlying statistical behavior. Probability distributions,
correlation functions, transport properties, etc., can be explored in detail. LGA, as a discreet
form of molecular dynamics simulation, provides the researcher with complete system de-
tails not obtainable by either empirical or analytical treatments. LGA as a generalization of
cellular automata, offers a unique and powerful representation of macroscopic dynamics by
reducing the calculation to local space-time processes, collisions and streaming, controlled
within standard dynamic random access memory by employing only shifts and permuta-
tions of cell data 1. LGA models conserve exactly, throughout the entire simulation run,
all physical moments of the system, i.e. mass, energy, linear momentum, angular momen-
tum. Consequently, LGA may prove to be a numerically stable modeling technique with
performance and accuracy approaching finite-difference methods.

LBE is a generalization of LGA, where single-particle distributions are encoded directly
using real numbers. The simulation dynamics is driven toward an equilibrium distribution
which the modeler analytically determines a prior and encodes into the simulation algorithm.
The benefit of LBE over LGA is noise reduction. However, this benefit is gained at the cost
of giving up exact conservation of mass, energy, an momentum for a statistical conservation
of these quantities and also at the cost of requiring expensive float-point hardware. We

1Update of cell data can be achieved by using fast look-up tables. In principle, no central processing unit
operations are required.
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understand that the actual benefit of LGA and LBE methods over more traditional methods
is clearly uncertain. However, LGA and LBE merit the investment of basic research time
and resources because the potential payoff of such methods, if successful, can be very large.

2.5 Anticipated Benefits to the US Air Force

Recently simulation technology has gained considerable recognition at the highest levels in
the Air Force. Simulation technology is now considered a critical technology and an im-
portant new growth area for our laboratories. At Phillips Laboratory we have established
the Office of Environmental Simulation. This office will help coalesce DoD resources re-
lated to environmental simulation into a state-of-the-art technology base from which system
program offices, DoD engineering and research components, major defense contractors, etc.,
in the future may draw upon as they design new Air Force systems which are impacted
by the environment–in particular, tropospheric effects. The capability to do wide ranging
computer-based proof-of-concept tests of new system designs using simulation technology is
hoped to be a cost effective measure leading toward reduced acquisition costs. This is per-
ceived by Air Force leaders as an critical technology shift to stave off adverse impacts of the
declining defense department budgets. Yet this direction in which the Air Force community
is heading, although highly appealing to most Air Force leaders, is actually technically very
risky.

Although the objective is for broad-based environmental simulations to reduce future
design and engineering costs, this has in no way been proven a viable route. Currently 6.2
based simulation technology thrusts are driven by non-physical constraints. Often a model’s
visualization and graphics output is viewed as the critical ingredient to “good” simulation.
Graphics and visualization are easily understood and consequently seem to receive high pri-
ority. Underlying physical components of such models are either missing or underemphasized
and, therefore, in serious risk of large inaccuracy and numerically unstable behavior. Basic
research using efficient or “quick” methods to explore certain physical properties of an en-
vironmental system will help to underprop the Air Force simulation thrust. LGA is a novel
method for doing such quick physical explorations.

Most simulation technology project managers would like robust and physically based
engines. But these, for the most part, do not exist because on the one hand there is the
nearly overwhelming complexity of the problems and on the other hand there is the limited
computational performance of desktop workstation class machines on which most current
day simulation models reside.

The ambitious goals of the simulation community are not synchronized with the latest

3



supercomputer technology. This must be corrected for any real progress to be made in this
field. The principle platform for current Air Force simulation technology is the workstation.
Although the workstation’s performance has reached the point where traditional mainframes
are perhaps no longer as practical as they once were, workstation performance is still orders
of magnitude below supercomputing levels.

The principle objective of this basic research initiative is to explore a novel parallel com-
puting strategy which, if successful, will serve as an additional tool to aid the Air Force sim-
ulation thrust. We propose building a large fine-grained cellular automata machine (CAM),
still small enough for office desk-side use, yet with a performance comparable to a mas-
sively parallel Connection Machine-200. I do not believe that such a CAM will solve the
simulation grand strategy envisioned by Air Force leaders, certainly not in the near future.
Nor do I believe that such a CAM will serve as general-purpose computer for engineering
tasks and scientific exploration, again, certainly not in the near future. But I do believe
that such a CAM is a promising platform, and being optimized for lattice gas automata
(LGA) calculations, is an ideal platform for doing quick physical explorations of complex
fluid systems.

The LGA approach, which can be viewed as a discreet molecular dynamics (MD) model-
ing approach over a discreet space and time, and the LBE approach, which can be viewed as
a statistical discreet MD, are known to have application to hydrodynamics, thermohydrody-
namics, magnetohydrodynamics, reaction-diffusion systems, polymer melts. In the future,
it is likely, the LGA and LBE approaches should have application to geophysical problems
involving fine-grained locally interacting dynamics. With this new initiative we propose
building a large cellular automata machine and doing a detailed study of three-dimensional
hydrodynamics including multiphase fluids. Our purpose is to see if large CAM machines
can be constructed and can handle complex fluid modeling problems.

Although our hydrodynamics work may prove to be an effective tool in certain messy
regimes where traditional methods are not well suited, this would be only one of the pay-offs
of our new initiative research. Another pay-off will be a proof-of-concept of a novel parallel
computing strategy which captures in the most digitally efficient and numerically stable way,
the accurate physical behavior of complex fluid systems.

2.6 Funding

The projected total cost for the proposed basic research is supported by the Air Force Office
of Scientific Research contributing core funding and new initiative funding over the five-year
project cycle, fiscal year 1994 to 1998. Fiscal year 1994 funding is seed funding. The Phillips
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Laboratory expenses include salaries for in-house research scientists and engineers as well
as CAM design and construction costs. Out year figures for projected 6.2 and 6.3 funding
level transition have not been estimated. Also not estimated are supercomputer service
unit costs for the Connection Machine 200 and Connection Machine 5 at the Army High
Performance Computing Research Center (AHPCRC). Resources at AHPCRC are requested
under a separate but complementary proposal.

2.7 Tasks

• Develop 3-D hydrodynamic lattice gas and lattice Boltzmann automata code including
multiphase fluid system. Explore lattice Boltzmann dynamics which can model a fluid
system with a general equation of state.

• Test novel lattice gas computing architectures: 128 million 16-bit site CAM-8 pro-
totype. Design 1-billion 16-bit site CAM-8-64 machine 64 modules using an SBIR
vehicle.

• Explore ways of using multgrid methods in lattice Boltzmann simulations.

2.8 Schedule and Milestones
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Develop 3D LGA on CAM-8  
and LBE on CM-5 
 
LBE with General Equation of State 
 
Statistical Studies of Transport Properties 
 
Multiphase Fluid with Latent Heating 
 
Dynamics Studies: 3D Convection, 
  Thermal Topography, Radiation-Transfer 

FY94 FY95 FY96 FY97 FY98 

TASK 1 

TASK 2 

128-Module CAM-8 Design 
 
Design Review 
 
Assembly and Testing 
 
Operational Unit 

TASK 3 

Multigrid Methods for LBE 

FY99 

Figure 2.1: Schedule and Milestones
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Chapter 3

Hydrodynamic Lattice-Gas
Automata

3.1 Background

In 1983 Stephan Wolfram proposed a simple mathematical model to investigate self-organization
in statistical mechanics[3]. He proposed a new “elementary” formalism which he termed cel-
lular automata (CA) to treat dynamical systems on a discreet spatial and temporal lattice
where each site or “node” of the lattice has a binary 0 or 1 value. The configuration of the
discreet lattice then records the state of the dynamical field. The evolution of the field is de-
fined by a particular set of boolean rules. Computational efficiency follows from this discrete
formalism when the CA models a complex natural system with a large number of simple
identical components requiring only local interaction. In this way, the CA model may be
implemented on special massively parallel computers allowing one to update the state of the
dynamical field at each lattice site simultaneously. This becomes computationally efficient
when each site update requires knowledge of only its nearest neighbors and thereby minimizes
grid communications between processors of the parallel computer. Wolfram has shown that
such simple CA’s possess universal features of complex nonlinear dynamical systems. Since
Wolfram’s seminal research, many applications of CA have been found in diverse fields in-
cluding biology, chemistry, mathematics, and physics. In physics, CA’s have had application
in such areas as diffusion [9], hydrodynamics, information theory, magnetohydrodynamics
[11], and magnetic systems [10].

Frisch et. al. have presented a CA implementation of the Navier-Stokes equation using a
lattice gas automata in a two-dimensional triangular lattice [12]. In two-dimensions, for single
speed automata, only on a triangular lattice does the momentum flux tensor take the correct
form; and therefore, isotropy is upheld. This first lattice gas automata (LGA) simulation
of two-dimensional hydrodynamic flow is call the FHP model named after its authors Frish,
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Hasslacher, Pomeau. Extension of the FHP model to three-dimensions proved difficult in
that momentum conservation was violated, and isotropy problems again arose. This was
remedied by Dhumieres et. al. by employing a four-dimensional face-centered cubic lattice
projected on to three-dimensions to implement a LGA[15]. Much numerical simulation of
2D LGA has been performed [18] and comparisons made between simulation and theory
[19]. Therefore, there are well-defined prescriptions for determining fluid parameters such as
Rayleigh-Taylor instability growth rates [20] and shear viscosity [21, 22, 23].

3.2 Massively Parallel Implementation

Cellular automata potentially offer a large benefit over conventional numerical techniques
by their inherent computational stability and fine granularity. Yet CA’s promise of be-
ing more “economical” than standard finite-difference schemes used to numerically solve
partial differential equations depends upon whether or not they can be rigorously shown
to emulate Navier-Stokes dynamics. Much of the work of LGA modeling has been done
on two-dimensional lattices and more recently on four-dimensional lattices projected on to
three-dimensions. The range of validity of the LGA implementations is still an important
issue requiring further evaluation. Fundamentally, if we can validate LGA rules encoding
Navier-Stokes dynamics we should expect a drastic decline in elapsed computation time as
we can spread the LGA calculations over a larger and larger number of processors.

In concert with the new CA techniques, new massively parallel architectures also abound.
The Connection Machine is one such platform [37] [38]. Our research in this area therefore
hinges upon placing a dedicated massively parallel machine on site. Phillips Laboratory is
currently evaluating candidate architectures and is conducting an informal field survey. The
CM-2 and CM-5, currently at the ARMY High Performance Computing Research Center
(AHPCRC) and at several universities in Massachusetts, is a convenient platform since the
C-star and FORTRAN 90 parallel compilers are well advanced and ease the parallel coding
workload. Machines with the Mach operating system, which is based on message passing,
are also becoming available. However, despite the numerous commercial parallel computers
available, the optimum platform for LGA simulations are dedicated architectures such as the
CAM-8 currently development by Margolus and Toffoli at the MIT Laboratory for Computer
Science [40].
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Appendix A

Lattice Boltzmann Gas with a
General Equation of State

A.1 Abstract

We present a simple way to add an arbitrary equation of state to a automaton gas modelled
in the lattice Boltzmann limit. As a way of interpreting the lattice Boltzmann equation we
present a new derivation based on an automaton Hamiltonian and the Liouville equation.
A convective-gradient term added to the LBE is shown to be a sufficient route for modeling
hydrodynamic flow with a general equation of state. The method generalizes to multi-speed
gases in three-dimensions.

A.2 Introduction

Lattice gas methods for hydrodynamic flow over a discreet fine-grained space-time imple-
mented on massively parallel machines like the CM-2 and CM-5 [37] or programmable matter
machines like the CAM-8 [40] represent an important new avenue for practical simulations of
complex physical systems. Local streaming and collision rules define a mesophysical world
underlying the macroscopic system of interest. This robust computational methodology
provides an exciting alternative to, and not simply an approximation of, the usual par-
tial differential equation method of description and the associated finite difference schemes.
The cellular automaton formalism, popularized in the physics community by Wolfram [4],
has been extended to a more general lattice gas formalism [12, 15]. In lattice gas codes,
all individual boolean bits, representing automaton particles, simultaneously propagate and
rearrange within parallel architectures built from low-cost digital circuits.

Recently, this innovative lattice gas approach has been extended to the lattice Boltzmann
approach [31]. In place of the detailed streaming and colliding of digital bits, one focuses
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on the statistical regime where only total particle count per lattice direction per lattice
node influences the dynamics, and so one neglects particle-particle correlations. Although
this new approach is less noisy, it relies on expensive floating point calculations. The most
practical simulation method for production work may lie somewhere between the lattice gas
and lattice Boltzmann extremes. Yet the lattice Boltzmann approach offers an important
analytical advantage. One may capture the essential physics of the complex system by
stating no more than the system’s equilibrium distribution.

Here we exploit the analytical facility of the lattice Boltzmann approach and show that
the addition of a convective-gradient term in the lattice Boltzmann equation (LBE) allows
one to model a hydrodynamic gaseous flow governed by a general equation of state. We
restrict ourselves to single-speed automata. Thus, the system pressure may depend on local
density variations. It is straightforward however to generalize our result to a multi-speed
automaton gas so that the pressure dependence includes local temperature variations as well.

A.3 The Lattice Boltzmann Equation

We wish to consider a simple two-dimensional lattice Boltzmann gas defined on a discreet
spatial lattice. Automaton particles stream through the lattice and undergo collisions in
a similar fashion to the usual FHP model [12]. Therefore, there exists a small number of
momentum states given by

êa =
(
cos

2πa

b
, sin

2πa

b

)
, (A.1)

where a = 1, 2, . . . , b. The automaton Hamiltonian is the difference of kinetic and collision
terms

H =
1
2
êa

2 − F · q. (A.2)

Hamilton’s equations for an automaton are

q̇ =
∂H

∂p
= êa (A.3)

and
ṗ = −∂H

∂q
= F. (A.4)

Liouville’s equation for the distribution function may be written in terms of the automaton
Hamiltonian using the Poisson bracket notation [32] as

∂fa

∂t
+ [fa, H] = 0 (A.5)

where
[fa, H] =

∂fa

∂q
· ∂H

∂p
− ∂H

∂q
· ∂fa

∂p
. (A.6)
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To first order and near equilibrium we may approximate a change in the distribution function
by a collision as

∂fa

∂p
=

fa − fa
eq

‖F‖τ
F̂ (A.7)

where we have taken δfa = fa−fa
eq and introduced the collision relaxation time, τ , by writing

δp = ‖F‖τ . Using Hamilton’s automaton equations (A.3,A.4) and our linear approximation
of ∂fa/∂p (A.7), the Poisson bracket becomes

[fa, H] = êa · ∂fa

∂q
+

fa − fa
eq

τ
, (A.8)

and so we obtain, to first order, lattice Boltzmann equation

∂fa

∂t
+ êa · ∇fa = −1

τ
(fa − fa

eq). (A.9)

Shiyi Chen et. al. have arrived at (A.9) by expanding the lattice Boltzmann collision term
to first order [27] about an equilibrium distribution

∂fa

∂t
+ êa · ∇fa = Ωa. (A.10)

−→ Ωa = Ωa(f eq) +
∂Ωa(f eq)

∂fb

fb, (A.11)

where the zeroth-order term, Ωa(f eq), must vanish by construction. The simplest ansatz for
∂Ωa(f eq)/∂fb is to choose it to be diagonal

∂Ωa(f eq)
∂fb

= −1
τ
δab, (A.12)

where again τ is the characteristic relaxation time for the simulation. Integrating (A.12)
leads to the same collision term as in the R.H.S. of (A.9)

Ωa = −1
τ
(fa − fa

eq). (A.13)

The collision term is proportional to the difference of the distribution function and its equi-
librium value.

A.4 Equilibrium Distribution

To compute the system dynamics on a parallel machine we implement the exact cellular form
of (A.9)

fa(x + êa, t + 1) = fa(x, t) − 1
τ

(fa(x, t) − fa
eq(x, t)) . (A.14)
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The local cellular automaton rule (A.14) does not explicitly show any mixing of particle flow
directions. That fact that (A.14) does represent collisional mixing is implicitly built into the
form of fa

eq which depends on the local density and flow velocity

ρ =
∑
a

fa (A.15)

and
u =

∑
a êafa∑

a fa

. (A.16)

Chen et. al. [31] have introduced a pressure-corrected lattice Boltzmann equation (PCLBE)
by taking the equilibrium distribution to have the following Chapman-Enskog expansion

fa
eq = d +

ρD

c2b
êa · u + ρ

D(D + 2)
2c4b

êaiêajuiuj − ρD

2bc2u
2 (A.17)

which removes the spurious effective pressure induced by the FHP flow’s kinetic energy. The
ideal part of the momentum flux tensor takes the correct form

Πij =
∑
a

êaiêajfa
eq (A.18)

=
bd

D
c2δij + ρuiuj. (A.19)

A.5 Density Dependent Pressure

From the PCLBE in Section A.4 we know the equation of state for the isothermal gas is [31]

p = c2
sρ. (A.20)

We now wish to consider how we may alter the LBE to allow for a more general equation of
state. Let us add an additional term, ha, to the R.H.S. of (A.9)

∂fa

∂t
+ êa · ∇fa = −1

τ
(fa − fa

eq) + ha(ρ). (A.21)

In (A.21) we have written ha as a function of the local density. In a multi-speed model
[33, 34] ha may depend on the local temperature as well.

We wish to constrain the form of ha so as not to violate continuity. We require

∑
a

ha = 0, (A.22)

and when ∇fa = 0 , ∑
a

êaha = 0. (A.23)
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Constraint (A.23) is required only in uniform flow; i.e. for general flows
∑

a êaha is non-zero.
In the uniform flow limit the LBE reduces to

∂fa

∂t
= Ωa + ha(ρ). (A.24)

Summing over all lattice directions and using constraint (A.22) we have maintained the
collision property that ∑

a

Ωa = 0. (A.25)

Multiplying by êa, summing over directions, and using (A.23) similarly yields

∑
a

êaΩa = 0. (A.26)

Thus, for arbitrary flows, summing the LBE over all directions preserves continuity

∂t

∑
a

fa +
∑
a

êa · ∇fa =
∑
a

Ωa +
∑
a

ha (A.27)

−→ ∂tρ + ∇ · (ρu) = 0, (A.28)

where we have used equations (A.15,A.16,A.22, and A.26).
In a similar fashion, we may arrive at Euler’s equation

∂t(ρui) + ∂j(Πij) =
∑
a

eaiha(ρ), (A.29)

where the momentum tensor is
Πij ≡ ∑

a

eaieajfa. (A.30)

The R.H.S. of (A.29) imparts an effective density dependent pressure. We may expand ha

as follows

ha = h(0)
a + eaj∂jh

(1)
a +

1
2
eajeak∂j∂kh

(2)
a +

1
3
eajeakeal∂j∂k∂lh

(3)
a + · · · (A.31)

Given constraint (A.22) and the identities listed in the appendix, we immediately see that
h(0)

a and h(2)
a must vanish. So the form of ha simplifies to a total convective-gradient

ha(ρ) = êa · ∇
(

D

b
g1(ρ) +

D(D + 2)
3b

eakeal∂k∂lg2(ρ)
)

, (A.32)

where for future convenience we have introduced g1 = bh(1)
a /D and g2 = 3bh(3)

a /D(D + 2).
The R.H.S. of Euler’s equation (A.29) then becomes

∑
a

êaha(ρ) = ∇
(
g1(ρ) + ∇2g2(ρ)

)
. (A.33)
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Substituting (A.18) and (A.33) into Euler’s equation (A.29) gives the Navier-Stokes equation

∂t(ρui) + ∂j(ρuiuj) = −∂i

(
c2ρ − g1(ρ) − ∇2g2(ρ)

)
. (A.34)

Therefore, we have arrived at an arbitrary equation state defined by functions g1(ρ) and
g2(ρ). The form of the density dependent pressure follows

p(ρ) = c2ρ − g1(ρ) − ∇2g2(ρ). (A.35)

A.6 Conclusion

We have given a new derivation of the lattice Boltzmann equation starting from a sim-
ple automaton Hamiltonian and Liouville’s equations. We reviewed the LBE method and
illustrated its flexibility in writing an analytical expression for the system’s equilibrium dis-
tribution to remove the spurious pressure kinetic-energy dependent term characteristic of
an FHP gas. Now the hydrostatic pressure correctly depends linearly on the local pressure.
Given this context, we generalized the LBE by the addition of a convective-gradient term
allowing us to model a hydrodynamics governed by an arbitrary equation of state.

A.7 Identities for êa

Our momentum states are just the complex bth roots of one

êa =
(
cos

2πa

b
, sin

2πa

b

)
, (A.36)

where a = 1, 2, . . . , b. The momentum state-space has cardinality b. Lattice summations
over odd powers of êa must vanish by symmetry. The following identities, listed up to the
fourth moment, hold for arbitrary values of b and spatial dimension D [8]

∑
a

eai = 0 (A.37)

∑
a

eaieaj =
b

D
δij (A.38)

∑
a

eaieajeak = 0 (A.39)

∑
a

eaieajeakeal =
b

D(D + 2)
(δijδkl + δikδjl + δilδjk). (A.40)
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